nernaidonal

International
AN WA,
SN A ®

Sy

#

4 NETWORK-BASED KNOWLEDGE REPRESENTATION AND
ITS NATURAL DEDUCTION SYSTEM

TECHNICAL NOTE 147

JULY 1977

By: Richard Fikes
Xerox, Palo Alto Research Center
Palo Alto, California

Gary G. Hendrix
Artificial Intelligence Center

333 Ravenswood Ave. » Menlo Park, CA 94025
{4151 326-6200 = TWX: 910-373-2046 = Telex: 334-4386

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
JUL 1977 2 REPORTTYPE 00-07-1977 to 00-07-1977
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER
A Network-Based Knowledge Representation and Its Natural Deduction | -, NUMBER
System
5¢c. PROGRAM ELEMENT NUMBER
6. AUTHOR(S) 5d. PROJECT NUMBER
5e. TASK NUMBER
5f. WORK UNIT NUMBER
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
SRI International,333 Ravenswood Avenue,Menlo Park,CA,94025 REPORT NUMBER
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)
12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited
13. SUPPLEMENTARY NOTES
14. ABSTRACT
15. SUBJECT TERMS
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF
ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 43
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Abstract

We describe a knowledge representation scheme called K-NET and a problem solving system
called SNIFFER designed to answer queries using a K-NET knowledge base. K-NET uses a
partitioned semantic net to combine the expressive capabilities of the first-order predicate
calculus with finkage to procedural knowledge and with full indexing of objects to the
. relationships in which they participate, Facilities are also included for representing
taxonomies of sets and for maintaining hierarchies of contexts. SNIFFER is a2 manager and
coordinator of deductive and problem-solving processes. The basic system includes a
logicaily complete set of natural deduction facilities that do not require statements to be
_ccnvened into clause or prenex normal form. Using SNIFFER's coroutine-based control
structure, alternative proofs may be constructed in pseudo-parallel and results shared among
them. In addition, SNIFFER can also manage the application of specialist procedures that
have specific knowledge aboul a particular domain or about the topology of the K-NET
structures. For example, specialist procedures are used to-manipulate taxonomic information

and to link the system to information in external data bases.

A Network-Based Knowledge Representation and

its Natural Deduction System
by

Richard Fikes and Gary Hendrix

Introduction

This paper describes a question answering system whose principal components are a
network-based knowledge representation scheme called K-NET and a problem solving system
called SNIFFER (an acronym for Semantic Net Interpretation Facifity Fortified with Exterpal

Routines), designed to answer queries using a K-NET knowledge base.

The goal of the effort has been to create a design that allows specialized representations and
deductive schemes to be used where they are effective, while providing recourse to a
logically complete natural deduction mechanism when necessary, SMIFFER has been desigzied
.with the intention that most of the question answering work will be performed by special
domain-dependent procedures. These specialists can take advantage of the particular
topology of the K-NET structures designed to represent domain-specific types of knowledge.
Specialist procedures also allow SNIFFER to do certain tvpes of problem solving usually
considered outside the range of conventional deduction. For example, specialisis may be
added that know how to extract information from conventional data bases or do scheduling
and planning. In this paper we seek to indicate the handles for adding specialized
knowledge while concentrating on the fundamental issucs of implementing natural deduction

for network systems.

SNIFFER and K-NET are evolving systems, versions of which have been used as major
components in larger systems developed in the SRI Artificial Intellizence Center, including

the SRI Speech Understunding System (Waiker 1976),

To help the reader relate our work o other knowledge representation facilities and problem

solving systems. we begin by presenting the distinguishing and characterizing features of our
system before focusing on a more detailed overview that eiaborates on these features and

provides concrete examples.

Characterizing Features of K-NET

K-NET provides facilities for creating a partitioned semantic network of labeled nodes
connected by labeled unidirectional arcs. A node represents an entity in the world being
modeled and an arc represents a binary relationship between the nodes that it connects. For
example, the nodes John and Men in Figure 1 represent a man John and the set of all men,
respectively. The arc labeled "e” from John to Men indicates that John is an element of the
set of men. Relationships can be considered to be entities and be represented by nodes with
"case” arcs pointing to the participants in the relationship. For example, node Q represents
the ownership relationship (situation) existing hetween John and the automobile "Ole-Biack”

over the time interval from t{ to ty.
K-NET can be characterized by the following list of features:

* Facilities are provided for representing muitiple "worlds” and the relationships among
them. In particulzr, the network can be partitioned into subnets (called spuces). Spaces can
be hierarchically embedded by treating an entire space at one level in the hierarchy as a
single node in a space at the next higher level. A “context” mechanism exists that allows
only 2 ziven set of spaces to be “visible” to the retrieval procedures at any one iime,
Examples of alternative worlds include those contained in a disjunction. or the world
composed of the set of beliefs that John has ahout Sally as opposed 10 tie world compuosed

of the set of beliefs that Sally has about herself,

~* The expressive facilities of the representation scheme include those of the first order
predicate caleulus, including existential and universal quantification. Oligher order pradicites use
also representable in K=NET, but valy triviad interpretation facilities exist fur them in SNIFFER) That s,

the knowledze base can contain statements represented as negations (MJolin does not love

HUMANS SlTUAT_iONS AUTOMOBILES
&
FORDS

5

OWNING
SITUATIONS

JOHN

FIGURE 1 A SIMPLE SEMANTIC NETWORK

Mary."), disjunctions {("John loves either Sally or Sue.”), or implications ("If Sue answers
John's phone call; then John will ask Sue for a date."), and containing arbitrary nestings of

‘ existential and universal quantifiers ("Every boy has been in love sometime.").

* Taxonomies of sets are modeled by the topology of the network so that they become
the ‘basic skeleton -upon’ which the knowledge base is built. For example, one can directly
represent the relationships "Ford is an element of Companies distinct from G.M." and
"Mustangs is a subset of Automobiles distinct from Model-T's". One can also associate with
a set characteristic properties common to all elements of the set, such as "All Mustangs are

built by Ford".

* Procedures may be attached to the network to interface it to other knowledge .sources
such as conventional data bases or arithmetic algorithms. When called by SNIFFER, these
procedures extend lthe network by creating new lnodes and arcs represenling the information
acquired from the other sources. Links to these procedures are explicitly represented in the

" network so that their existence and role can be reasoned about and discussed by the system.

LK The network provides indices that facilitate associative rctrieval of the relationships in
which any given knowledge base entity is involved. For example, retrieval of all females
that John loves can be indexed through the node representing fohn, the node reprasenting
the set of lovinz relationships, or the node representing the set of females. The basic
mechanism is one that allows immediate access to all of a nede's incoming and outgoing arcs

thut are visible in any given set of spaces.

Characterizing Features of SNIFFER

SNIFFER is a “"natural” dediction system fos in Bledsse, of al. 1972 that is given two net
- structures as -input, one representing a knowledge base and the other representing a query
(usually a translaton of a question originaliy stated in English). 1t treats the query 25 2
'pi:tlern and attempts o find instances of the pattern in the knowledge base. or equivalently,

it treats the query as a theorem o be proved and atlempts to {find insiantiations Tor 1ts

existentially quantified variables. Results are returned in the form of sets of "bindings” for
the variables in the pattern. For example, the question "Who does John love?" is translated
into a net structure representing the pattern “John loves x" (or the theorem
{3x)[Loves(John,x}]), and SNIFFER returns bindings for x such as (x, Mary). Answers may
.either be retrieved from the knowledge base or derived using knowledge base theorems and

procedures.
SNIFFER ¢an be characterized by the following list of features:

* Associative retrieval of relationships from the knowledge base is performed using the

K-NET indexing facilities.

* Efficient, special purpose deductive procedures are used for extracting information
from the K-NET taxonomies. For example, if the knowledge base indicates that x is an
“element of the set of Mustangs, that Mustangs are a subset of the set of sports cars, and that
. sports cars are a subset of the set of automobiles, then SNIFFER can conclude that x is an
automobile by using procedures that follow the chain of elementOf and subsetOf arcs,

thereby bypassing the more cumbersome, general-purpose deductive machinery.

* Facilities are included for answering questions and using knowledge base statements
composed of conjunctions, disjunctions, and implications, containing arbitrarily embedded

universally and existentially quantified variables.

* Queries and knowledge base statements are processed in the "natural” form in which
they are input, without converting into a canonical form such as clause form or prenex
nornal form. This capability eliminates "explosive™ conversions (such us converting the
~disjunction (aABAC) V {dAeAT) V (gAhAT) into clause form which consists of 27 clauses
cach contuining 3 disjuncts) and wanecessary conversions (such as conversion of a
-disjuhciivc question’s complex disjuncts when one of its simple disjuncts can casily be shown
to be true). In addition, the intuitiveness and heuristic value of the form in which

statements are input (as implications, for example) is maintained.

* A logically complete set of natural deduction rules are used that reason backwards
from the guestion. These rules use such technigues as case analysis, hypothelical reasoning,
~and the establishing of subgoals. For example, to answer a question that is in the form of
~an implication, SNIFFER might use hypothetical reasoning by assuming the implication's

antecedent and then pursuing a.proof of the .consequent as a subgoal.

* A fiexible cofo.uti.ne-ﬁase:d cbntrol”s&Uclﬁre :ilIoWs the-éohstruétion of alternative
proofs in a pseudo-parallel manner, with results being shared among the alternatives. Each
partial proof has its own local scheduler to determine how its proof attempt should be
continued. There is an executive scheduler that uses information supplied by the local
schedulers to determine which partial proof is to be given control at each step. The various
schedules provide the facilities necessary to allow reasonable heuristic guidance of the total

deduction and retrieval process.

* User-supplied procedures may participate in the attempt to find answers in two ways,
Fifst.- procedures included in the X-NET knowledge base may be invoked to access
information in knowledge sources that are external to K-NET. Second, SNIFFER allows the
inclusion of user-supplied procedures that extend the system’s problem solving capabilities.
Such procedures may add heuristics to the deductive strategies or even integrate new
Lknowledge sources into the system, such as data hases and planners. Facilities are available
10 these procedures for creating alternative proofs, manipuliing scheduies, altering
priorities, and establishing "demons." so that the user ¢an create strategies that augment and

interact with those that already exist in the svstem.

* SNIFFER is implemented as a "generator” (see Teitelman. 1975} so that after returning an
Canswer it can be restarted to seek a sccond answer 1o o guery, For example, given the

~ o question "Who owns o Mustang?” SNIFFER may first produce the answer "John", then be

' "pulsed” again 1o ;3’ru'c!u'u.: "Mary", ete. This style of answer production :ﬂ[nws the usor id'

Cexamine each answer as it is produced and dynamically determine whether additiona]

answers are needed,

* "No" answers are determined by finding an atfirmative answer to the question's
-negation. For example, if given the question "Does John love Mary?", SNIFFER will attempt

to prove "John does not fove Mary” in addition to attempting to prove "John loves Mary".

Overview Description of K-NET

In this section we will describe and illustrate how K-NET is used to encode knowledge;
Throughout the section reference will be made to the example knowledge base shown in

Figure 2, which represents some facts about automobiles.

Taxonomies

Major portions of the semantics of a task domain can often be expressed naturally by a
taxonomy of sets that indicates the major sets of objects fn the domain and the relationships
“between the sets. The power of the taxonomy can be enhanced further by the inclusion of
statements that specify necessary and/or sufficient conditions for membership in the sets,

K-NET provides the following facilities designed specifically for encoding such taxanomics,

S arcs indicale "subset of " refationships. For example, the s arc in Figure 1 from the Men

node to the Homans node indicates that the set of men is a subsel of the set of all humans,

Most sibling subsets described in taxonomies are disjoint. Arcs labeled ds are used in K-NET
‘to represent this disjointness property in a concise and easily interpretable manner. A ds arc
from a node x to a node z indicates that the set represented by x is a subset of the set
: repfesenled by » and that the x set is disjoint from any other set represented by a node with
an outoing ds arc 1o z. For exampie, the ds arcs m the figure (e, Figure 2) emanating from
“the Humans and Companics nodes indicate that the sct of humans and the set of companics

~care disjoint subsels of the set of legal persons.

" Since each node in"most taxonomics represents adistinet ¢ntity, and in gencral an catity cah
be represented by any number of nodes in a K-NET, ares faheled de (For "distinet element™)

are used to indicate that two or more nades each represents a distinet element of o set. in

ds

UNIVERSAL

s s

SITUATIONS
d
ds

LEGAL
PERSONS

b ds
COMPB
h
de

Knowledge

PHYSOBJS

AUTOMOBILES

Kb

obj

LIZZY

o

FIGURE 2 AN EXAMPLE KNOWLEDGE BASE .

W

particular, a de arc from a node x to a node z indicates that the entity represented by x is an
element of the set represented by z and that the x entity is distinct from any other entity
'represented by a node that has an outgoing de arc to z. For example, the de arcs in the
figure emanating from the G.M. and Ford nodes indicate that G.M. and Ford are distinct

~members of the set of companies.

E arcs are used to indicate “element of™ relationships without making a commilrﬁeht to-
distinctness. For example, Fred. Jill, and Mary may be known to be distinct elements of
Riders, the set of people that rode to the airport in Fred's car. If some fact is known about
the driver of the car and the identity of the driver has not yet been determined, then a node
D representing the driver may be linked to set Riders by an e arc. The node D can be used
io encode information about the unnamed driver without specifically indicating which of

the distinct ei_ements of Riders is the driver.

Situations

SNIFFER asswnes that relationships other than clementOf and subsetOQf are represented by
nodes having outgoing casec arcs pointing to the participants in the relationship {(such as
node 1* in the figure, which represents the relationship “Ford built Lizzy"). This
representational convention allows an arbitrary amount of information to be siored with a
relationship {using outzoing case arcs) and allows associative retrieval of (he relationship
using the nelwork's indexing facilities. Such relationships are grouped by type into sets and
these sets are considered to be subseis of the set of all "situntions”. For example, Builds (the
set of all situations in which building takes place) and Implications are disjoint subsets of
Situations in the figure, and node P represents an element of the Builds set, a pacticular
butiding situation in which Ford is the agent and Lizzy is the object built. (The sitwsion
.*L‘prcscmcd b.y P took place over an inferval of time from StartTinie to i:'.nd'l'ime. -:Thésc time cises wotdd hé

present (in 4 more complete “description of 1)

10

Spaces and Vistas.

Perhaps the primary feature that distinguishes X -NET from other semantic networks is that a
~net can be partitioned into subnets, and relationships among the subnets can be explicitly
- and easily represented (see Hendrix, 1975). Al nodes and arcs in a K-NET are "elements” of at

feast one "space" (i.e., subnet). In the figures, such spaces are depicted by bokes. -For

example, node P in the figure and the obj arc from P to Lizzy are elements of the Knowle.dge
space. A space can be (and usually is) a node in some other-space. For example, in the

figure the conse arc from node I points to a node in the Knowledge space that is itself a

space. When retrieving information from a network, it is convenient to have only a

specified list of spaces, called a “vista", visible to the retriever. For example, the vista that

would typically be used when retrieving information from the space pointed to by the conse

arc in the figure consists of the space itself and the Knowledge space.

Negations, Disjunctions, and Implications

A representation scheme for negations, disjunctions, and implications must allow one or
more "worlds" to be described and a relationship to be usserted among the worlds (e.g., that
at least one of them is true). K-NET's partitioning facilities provide the required capabilities

for creating just such a scheme.

A negation occurring in some space s describes a collection of entities and relationships, and

asserts that no collection satisfying the description can exist in the world represented by

space 5. We represent such a negation as shown in Figure 3a hy creating 2 space to describe

_ the coilection, and by adding the created space 1o space s as a node with an ontgoing ¢ are to

—ueaations, the node that represents the set of all negation relutionships. For example. the
statement "G, does not build convertibles” would be represented using a :%pnce'(lcscrihing a -
cutlér:tio'n consisting of an ¢ntity €, an eleientOf rc!'ati'onshi'p'ijet\.v.c'an C fmd thu set of

~convertibles, and a build relationship with agent G.AL and object €.

A disjunction occuriing in a space s describes alternative collections of entitics and

11

NEGATIONS

I 3

e

N
{collection of entities
and relationships)

a. NEGATIONS (7N}

Qunenos |
e

i

A B c

b. DISJUNCTION (Av B v C)

¢. IMPLICATION (A -+ C)

FIGURE 3 ABSTRACTION OF LOGICAL CONNECTIVES

12

-relationships, and asserts that entities and relationships satisfying at least one of those

~descriptions exists in the world represented by space s. As shown in Figure 3b, we describe

- each disjunct in a separate space and represent a disjunction as a set of such disjunct spaces.

‘An implication occurring in a space s describes two collections of entities and relationships,

~ and asserts that if entities and relationships exist in the world represented by space s that

" satisfy the first of the two descriptions (the antecedent), then entities and relationships

satisfying the second description {the consequent) also exist in that world. We represent an
implication as shown in Figure 3¢ by a node with outgoing case arcs to spaces containing the
descriptions of the antecedent and consequent. More concrete examples of implications will

be presented in the next section.

Quantification

One of the important features of K-NET is that it provides facilities for representing

arbitrarily nested existential and universal quantifiers. Existential quantification is a "built-

-in" concept in the sense that we take the occurrence of an element (i.e., a node or arc) in a

space to be an assertion of the existence with respect to that space of the entity or

-telationship represented by the element. In particular, if an element gccurs in the system's

"knowledge space”, then that element represents the system's belief that a corresponding

entity or relationship cxists in thé domain being maodeled.

Existential quantification and negation could be used to represent any universally quantified
formula (Vx€X)P(x) by making use of the following transformation:

(VXEX)P(x) = ~~[xeX)P(x)] == ~[(3xEX)~P(x)] .

The K-NET represéemtation of the transformed fermula is shown in Fignre 4.

 Although this representition is logically sound, it is extremely unzppealing intuitively, The

following transformation suggests ‘a more attractive representation:

C(Yx € X)P(x) = (YN)[x € X) = P(0] .

13

NEGATIONS

A
e e

/@

/ N

10 e

e NN

FIGURE 4 ~[{3x € X)~P{x)}

14

J§

. That is, any universally quantified formula can be represented as an implication whose
- “antecedent specifies the "typing" of the universally quantified variable and whose consequent

e specifies the statement that is being made about any entity that satisfies the type restrictions.

c A 'c'lisfingﬁiéﬁihgffcéiure' of t.ﬁé.'u:nivéré;zilly guantified variable x in this implication is that it
I_ 6c<':.u'.r's'.i:n both the antecedent and the consequent. We have made use of this feature by
' 'ac'iol')ting'"tﬁe convenlion in K—N'ET thét if 'a node occurs in both the antecedent and the
éonsequ’eni spaces of an implication, then we consider it to be the representation of a
universally quantified variable. This convention is, in fact, used as the primary means of

representing universal quantification in our system.

When the main connective of a formula is an implication, it is not necessary to embed the

formula in another implication to represent the universal quantification. That is:

(¥x € X)fQ) = R(x)] =
C L ¥oitx € X) = [QK) = RMD
Iy €) A G = R}

il

Figure 2 shows the K-NET representation of a concrete example of such an implication,
namely the statement "For all M in the set of Mustangs, there exists a B such that B is an

element of the Builds situations, the agent of B is Ford, and the object built is M."

Arbitrary nesting of quantifiers may be achieved by placing implications in the conseguent
spaces of other implications. For example:
(VxEX)EYEYNVIEDP(X,y.2) =

(YRHXEX = @VIYEY A (Y2)(EZ = Plxya)]} -

Figure 5 summarizes the conventions for representing quaniification by contrasting the K-

L UNET representations of (INEX)P(x) and (VXEX)P(X).

Procedural Augmentation

For many applications, it is important for the syslem’s knowledge base to inctude sources of

15

~()

arg

e

O,

{IxeX)P(x) or
Ax[xeX ~ P{x)

G%
\

e
ante

conse
e

OF
5

(WxeX)P{x) or
o x[xeX=P(x)] -

FIGURE 5 EXISTENTIAL AND UNIVERSAL QUANTIFICATION

information such as relational data bases or arithmetic algorithms external to the K-NET
‘nets. (See Reiter, 1977, for another example of an inference system designed o interact with a relativndl dala
“base) We have adopted a set of conventions in K-NET for describing finks to such external

- knowledge sources.

: Thelmks o .éx'l'é'fnzi! k'hc.).wled.ge soujrc'.e.s; are 're'pfesénté'd by “theorems” (i.é., _ifnplicéﬁohs
_tbntaiﬁing universally qli':imif:.ie"‘d'variéble's) in the system's knowledge space that have the
form exemplifiad by lhé network shown in Figure 6. Such theorems are interpreted to mean
that if there is a successful application of the indicated function to a set of arguments that
satisTy the description given in the antecedent, then the arguments and the results returned
by the function can be used to create relationships and entities satisfying the description

given in the consequent.

‘The particular theorem of Figure 6 indicates that an appiication of INTERLISP's PLUS
':function can be used to produce new instances of the Sums relation in the nel. This
theorem makes it unnecessary for all the instances of the Sums relation to be explicitly
represented in the knowledge base. When SNIFFER attempts to match a patlern involving the
sum of two numbers, it can use this theorem to form a call of the pLUS function and to
translate the results of that call into the desired Sums relationship. The manner in which
SNIFFER uses knowledge sbout the Applications set to create new relationships from the

results of procedure calls is discussed below in the section on special purpose binder tasks,

17

@TER'—PROCE@
R L . | “e
_ / - Te

ante

FIGURE & LINKING RELATION SUMS TO PROCED‘URE PLUS

i8

oy

Overview Description of SNIFFER

This section describes and illustrates the basic features used by SNIFFER in retrieving and
deriving information from K-NET structures. We begin by considering how SNIFFER IS
_-invoked and by illustrating how it would go about solving two simple problems. Alttention

‘ts then turned to the overali control structure and to the operations performed by various

- components.

Introduction

SNIFFER is given as input a vista representing a query (the QVISTA) and a vista representing
the beliefs that are to be considered true while answering the query (the KVISTA). Like other
vistas, the QVISTA and KVISTA are lists of spaces. In aggregate, the nodes and arcs of the
various spaces in the QViISTA describe a set of entities (i.e., objects and relationships) whose
existence is to be established in the KVISTA. If a set of such entities can be found to exist,
then SNIFFER returns a list of “"bindings” that link the QVISTA descriptions 1o their KVISTA
instantiations. Otherwise, SNIFFER aitempts to prove that no such collection of entities can

exist, so that a negalive response can be given,

For example, Figure 7 shows a KVISTA and a QVISTA for the query "What company built
Lizzy?". Given this QVISTA, SNIFFER seeks an element of the Builds situations set having
both Lizzy as its object and an element of the Companies set as its agent. The Builds
situation represented by node P in the KVISTA is found by using the incoming e arcs to the
Builds node as an index, and a "Yes" answer is generated with I as the binding for node 7
and the Ford node as the binding for node ?X. The "Yes" answer indicates that the question

was based on a true premise, and the binding for ?X is the actual value that was sought.

" Given the ®visTa and oviIsTa shown in Figure 8, SNIFFER must carry out a derivation 1o

~answer the query using the KVISTa theorem "All Mustangs were buitt by Ford.” The theorem

is Tound by indexing on the incoming e arcs to the Bailds node. A unification process

‘determines that the rclevant instance of the theorem is one in which the universally

quantified variubte M is replaced by Ole-Blaek, The theorem allows 2 new Builds situation

fo be asserted if it can be shown that Cle-Black is an element of the Mustangs set. A

i9

subproblem is created to find that ElementOf relationship, and when the subproblem is
solved, the new Builds situation is asserted and the desired bindings are assigned. In
'p'articu!ar. node ?X is again bound to Ford and Z is bound to the newly derived Builds

-situation.

'Control ‘Structure

As an introduction to SNIFFER's control structure, éonsider the following simplified
description of how the system goes about answering queries. The basic process consists of
selecting an unbound QVISTA arc and finding a match for the selected arc in the KVISTA,
The matching arc then implies matches for the nodes at each end of the selected QVISTA arc.
After each arc is bound, the process is repeated until all the arcs and nodes of the QVISTA

have been bound.

This conceptuatly simple process is complicated by a number of factors. At each step in the
process there are typically many alternatives that may be followed. For example, any of the
unbound arcs in the QVISTA might be selected for consideration and each of these might be
successfully bound to many KVISTA arcs. Another complicating factor is that some
structures in the QVISTA will have no matches in the KVISTA, even though their existence is
implied by statements in the KVISTA. Deductive machinery must be invoked to derive
explicit representations of these implied structures. Within the deductive machinery, cheices
must be made between alternative strategies for pursuing a derivation and among the -
coliection of KViSTA statements thit could possibly be used to derive the desired matching

-structure,

The control structure that we have evolved for sNIFFER allows these various alternatives to
“be pursued in a pseudo-parallel "hest first” manner. . K-NET's partitioning facilities and
CINTERLISP'S cofoutings are used to create’ a system environiment fhat aliows each alternative

to have its own subproblems. ussumptions, and derived resulls, und for the choices among

these alternatives o be guided by both built~in and user-supplied evaluation functions.

20

. Knowledge
5
ds
LEGAL _
o PERSONS PHYSOBJS -
| ds . "
ds ds ds ds
HUMANS AUTOMOBILES

ds

/ e ds
/ &>
/ conse
!
l e
| of e
\
\
\ OLE-BLACK
\
\
obj - Lizzy
-
/’/.—-‘
e
S The Question: '“What
e o company buiit Lizzy?”
» - o - Query
KVISTA = (Knowledge)
QVISTA = {Query)

FIGURE 7 WHAT COMPANY BUILT LIZZY?

21

| LEGAL
'\ PERSONS

Ads

COMPANIES
4

UNIVERSAL

SITUATIONS

Knowledge

PHYSOBJS

AUTOMOBILES
ds

agt

obj

S '__'Query "

FIGURE 8

WHAT COMPANY BUILT OLE-BLACK?

22

The Question: "What _
company built Qle-Black?"”

The Eavironment Tree and Task Agendas

SNIFFER proceeds by building a tree of alternative proofs, each node of which represents a
data environment that includes a set of choices of bindings for QVISTA elements and
derivation strategies. Each time a choice is to be made in an environment, an offspring
environment is created and the results of the choice are established in the offspring. For
example, if a b'in:din'g for a QVISTA element is found, then an offspring environment will be
created in which the binding will be assigned. The search for additional bindings can then
be continued in the parent environment, but SNIFFER is committed to the assigned binding

in the offspring.

Included in each environment is a task agenda (puucrlncd after the agenda mechanism in KRL-0, see
Bobrow and Winograd, 1977) that defines n priority levels and allows a list of tasks to be stored
at each priority level. The SNIFFER Executive typically proceeds by selecting an environment
to give control to and then running the highest priority task on the selected environment's
- agenda. Each task is composed of a LiSP function and a set of arguments upon which the
function is operating. Typical tasks look for KVISTA descriptions matching a given QVISTA
description or. if necessary, initiate derivations to deduce new explicit descriptions from

tmplicit descriptions contained in KVISTA "theorems”.

The Executive also has its own task agenda that is used to determine what to do at each step.
Initially, this agenda has three tasks on it; one to initialize an environment tree to seek "Yes”
answers (o the query, one to initinlize an environment tree to seek "No™ answers to the
query, and the one mentioned above that selects an environment, runs the task defined by

that environment's agenda, and reschedules itself.

The agenda associated with the top environment in an environment tree initially contuins a
singie task that selects for consideration unbound arcs that He in the OvisTA. Lach time the
_selector task is restarted, it selects another OVISTA arc, creales a "hinder” task that will seek

‘bindings -for the selected arc, schedules the created task, and reschédules iseif.

When a binder task finds a KVISTA arc that is a "candidale™ (ie. potential) binding. it

23

creates a new offspring environment in the environment tree that is a copy of the parent,
assigns the binding in the offspring environment, and reschedules itself in the parent
environment. Hence, at any given step, each terminal environment in the tree includes a

'partialfy formed alternative answer to the query.

Provisions have been made for attaching "demon” functions to QVISTA nodes and spaces in
an environment. Demons attached 1o a QVISTA node, which are "fired” when a binding is
assigned to the node, allow binder tasks to "pause” until other bindings have been assigned
that can be used as indices. Demons attached to a QVISTA space, which are fired when
bindings have been assigned to all the arcs and nodes in that space, are useful in completing
derivations and returning results. For example, demons are attached to each QVISTA space in
the initial environment of an environment tree. When the last of these demons fires in an
environment, bindings will have been assigned to all QVISTA elements in that environment
and an answer can be generated. The last demon causes the answer to be generated by

- scheduling an appropriate task on the Executive's agenda.

When an offspring environment is created, it inherits copies of s parent environment's
data structures, including the agenda, demons, and list of assigned bindings. [f a task or
demon represenis a “paused” coroutine that will be "resumed” when the task is run, then
copying it conceplually produces a copy of the coroutine so that the original task or demon
and the copy cun run independently in their respective environments. For example, if a
binder task is in a state such that it will consider relationship R as the next candidate
binding and it is copied into an offspring environment's agunda, then the copy will also
independently consider R as the next candidate binding. Similarly, a demon can be
independently fired in each environiment in which bindings for ail the space's elements have
been assigned. This powerful capability is implemented using the "spaghetti stack” facilities

“found in INTERLISP (Bobrow and Wegbreit, 1973).

Binder Tasks and User-Supnlicd Speciatlists

The Selector task in euch environment's agenda selects unbound QVISTA aics and crestes

24

binder tasks that seek bindings for the selected arcs. The procedures used in the binder tasks

embody the system's retrieval and derivational mechanisms.

- Domain-Specific Augmentation

The primary way in which SNIFFER can be augmented and adapted to a particular problem
domain is by providing additional procedures that can act as "expert” binder tasks for
specialized classes of relationships. Such experts may add heuristic guidance to the

deduction process or add completely new sources of knowledge.

For example, a2 binder task for ownership relationships might add heuristic guidance by
knowing that objects usually have a unique owner. This task would look for bindings by
following indices from the object to its owner rather than from the person to all the objects

he/she owns or from the set of all ownership relationships.

Another expert binder task might be written for the relationship between a person and his
telephone number. Rather than look for the person/number relationship in the K-NET, this
procedure might look it up externally in a phone book file. The procedure would then
create new structures in the KVisTA to encode the retrieved information and use this new

structure in the binding.

Strategy Selectors

When a QVISTA arc has been selected. it is passed through a set of “strategy selectors”, each
“of which is a function that can create a hinder task for the arc and indicate whether
_additional seleciors should be consuited. When a new function for finding bindings is
.ud(lcd o the system, a strategy selector is written for it and added to the set of selectors.
These strategy selectors provide a generalized form of patiern directed invocation of Lhe

binder tasks.

When no “"specialist” hinder task is available Por a sélected arc, a general purpose binder 1ask

is created that can seek bindings for any relationship or its negation using nalural deduction

25

theorem proving strategies. 1t uses the net's indexing fucilities to first find all atomic
statements (i.e., relationships other than disjunctions, implications, or negated conjunctions)
that contain possible bindings for the selected arc and then all nonatomic statements that
can be used to derive bindings for the selected arc. For example, the general purpose binder
task for arc Z--e-->Builds in Figure 8 would consider incoming e and de arcs (o the Builds

node as candidate bindings.

Ramification

When a binder task finds a candidate binding, it can apply the following "ramification”
rules to determine what other bindings are directly implied by the candidate. First, if two
arcs are to be bound to each other, then the from-node of the first arc must be bound to the
from-node of the second arc and the to-node of the first arc must be bound to the to-node
‘of the second arc. Second, we assume that a node can have at most one outgoing case (i.e.,
nontaxonomic) arc with any given arc label. Therefore, if two nodes are to be bound to
each other and both nodes have outgoing case arcs with a common label, ihen those case arcs
must also be bound to each other. For example, if in Figure 7 arc P-~e-->Builds were the
candidate binding for arc Z--e-->Builds, then bindings would be implied for nodes Z and

?X, and for the agt and ohj arcs.

If a candidate binding implies a binding that is inconsistent with an existing binding (for
example, one that assizns two different bindings to some QVISTA node, where ¢s and de arcs

1

in the taxonomics indicate that the two bindings represent distinct entities), then the

. candidate can be rejected and another one sought. Hence, this ramification process acts as a

powerful and efficient Tilter for candidate bindings as well as a producer of new hindings,

Self Scheduling

“The decision as o which binder task should be given control in any given environment is
made by aflowing cach such task to determine the priority level at which it is scheduled on

the environment's task agenda. A task makes this determination by assessing the difficulty

26

of finding bindings for its QVISTA arc based on estimates of the number of indices (i.e.,
matching arcs) available in the KVISTA, knowiedge about the semantics of the refationship
being sought, knowledge about the effectiveness of the task's search method, etc. User
supplied specialists may be written that are particularly adept at such assessments. The
basic goal of the overall strategy is for the system to first seek bindings for those QVISTA

-arcs that are most highly constrained.

Deriving Bindings for ElementOf and SubsetOf Relationships

Included in SNIFFER are a set of functions embodying the semantics of the taxonomic

relationships e, de, s, and ds. These functions provide the following eight services:

Given a node representing some entity X, they can generate nodes representing
entities y such that x is an element of y, y is an element of x, x is a subset of y, or y

is a subset of x.

Given two nodes representing entities x and y, they can determine whether x is an
element of y, vy is an element of x, x is a subset of y, or y is a subsct of x. Possible

‘answers are "Yes”, "No", and "Unknown™

The algorithms used follow chains of s and ds arcs applying recursive rules such as the

following:

Two sets are disjoint if cach of the nodes representing them has an oulgoing ds atc

to the same node, or if the sets are each subsets of disjoint sets.

These funclions are used in SNIFFER wherever information is needed about SuhsetOf or
 FlementOf refationships. In particular, they are used by the peneral purpose binder task o
find candidate bindings for ¢ and s arcs, and during the ramification process to test
" pdtcmin! bindings of QVISTA nodes as to whether the bindings can satisfy the FlementGf and
SubsetOf relationships specified for them in the QvISTA. Hence, these very important classes
of deductions are carried out rapidly and "zmmmutiéuily" whenever thev are necded, in a

manner that requires none of the slandard deductive machinery,

27

Derivations Using KVISTA Implications, Disjunctions, and Negafed Conjunctions

When the general purpose binder task has considered all the "explicit” candidate bindings
for a given arc, it uses the network’s indexing facilities to find nonatomic statements (i.e,,
implications, disjunctions, and negated conjunctionsT) that describe relationships having the
same form as the binding being sought. For example, arc B--e-->Builds in Figure 8 is used
as the index for finding an implication containing a "build” relationship. Such nonatomic
statements are used as the basis for a derivation of the desired binding.

T Double negations, nepated disjunctions, and negated implications are eliminated from both the KVISTA and
QVISTA by simplification rules.

Applicability Tests

When such a nonatomic KVISTA statement is found. the general purpose binder lask carries
. oul an applicabilily test to determine if the statement can be used to derive a binding for
.the ziven QVISTA arc. This test involves unifying (i.e., matching) the KVISTA statement with
the QVISTA statement in which the given QViSTA arc is embedded and, when successful,
produces a set of substitutions for universally quantified variables that define the "instance”

of the KVISTA statement applicable to finding the desired binding.

Several complications in doing the applicability test arise from the fact that neither KVISTA
nor QVISTA statements are siored in a canonical form. For example, a neguated relationship
in the antecedent of an implication ¢an be used to derive a binding for an unnegated form
of the relationship, but cannot be used to derive a binding for a negated form of the
relationship. In this section, we will discuss ithe mechanisms in $NIFFER for dealing with

these complications,

- Parity of Embedded Relationships

The applicability tester needs to determine what the logical signs are of the relationships
(i.e., terms) that a given KVISTA statement can be used to prove. For example, the statement

{(~x A y) = (~u V v) can be rewritten in the following ways:

28

(y AN u A ~v) = x
{~Xx A u A ~v} = =~y
(*x ANy A ~y) = ~u

(~x Ay A u = v

and can therefore be used to prove x, ~y, ~u, or v. If, then, a binding is being sought for a
relationship matching x, this statement may be useful in deriving the binding. However, the

statement cannot be used to derive a binding for ~x.

The logical signs of the relationships that a given statement can be used to derive correspond
to the logical signs that the relationships have when the statement 1s converted into
disjlinctive normal form. For example, the disjunctive normal form of the statement given
above is X V ~y V ~u V v. The logical signs of x, y, u, and v in this form of tne statement

are the same as those that the statement can be used to prove.

During the conversion to disjunctive normal form, only two conversion rufes change a

relationship’s logical sign. Namely:

~{~x) = x -and (x = y) = {~xV y).

Therefore, we can compute a "parity” for each relutionship in a statement t¢ indicate the
fogical sign that it would have in the statement's disjunctive normal form simply by
counting the number of negation spaces and antecedent spaces in which it is embedded. The
parity associated in this way with relationships ailows a quick determination of whether a

eiven KVISTA statement can be used (o produce the desired binding.

Parity of Embedded Variables

The applicability tester also nceds to determine what type of quantifier (ie, extsteatial or
universal) is associnted with each variable in the statement. For example, the stalement

[~(Yx)P(x) A (¥Yy)y)] = (@)i(z) can also be written:

29

[YYQ(y) A ~32R(z)] = (VX)P(x) and
[~(v0)P(x) A ~3DR@)] = Qy)~Qy)

and can therefore be used to prove (3z)R(z) or (Iy)~Q(y) or (¥x}P(x) . If, then, a binding
.is being sought for an existentially quantified QVISTA node that is a participant in an R
relationship, this statement may be useful in deriving the binding. However, the statement

cannot be used to derive a binding for a universally quantified node that is a participant in

an R relationship.

The quantification types of the variables in the relationships that a given statement can be
used to derive correspond to the quantification types that the variables have in those
relationships when the statement is converted into prenex normal form. For example, the
prenex normal form of the statement given above is (VX)@y)X3z){[~P(x) A Q(y)] =
R(z)}. The quantification types of x, y, and z in this form of the statement are the same as

those that the statement can be used to derive.

During the conversion to prenex normal form, only two conversion rules change a

relationship's logical sign. Namely:
~(YP(x) = @x)~P(x) of ~(3x)P(x) = (Yx)~P(x),

and Lvx)P(x) = y] = AV[P(x) = y] or
[ExPE) = y1 = (VO[PKx) = y] .

Therefore, we can compute a "parity” for each variable in a statement to indicate Lhe
guantification type that it would have in the statement's prenex normal form simply by

counting the number of nezation spaces and antecedent spaces in which it 15 embedded.

Mote that this is the same rule that is uscd For computing the parity of relationships!
Therefore, this single, compuiationally simple rule is used to define a parity for both arcs
“and nodes. The parity associated with an arc indicates the logicad sign of the relationship
represenied by the arc. and the purity associated with a node indicates wheiher the node

represents a universally or existentially auantified variable,

30

Matching Embedded Structures

The match process carried out by the applicability tester is a generalization of the
ramification process described above and is logically equivalent to unification. An attempt
is made to find a set of substitutions that will allow two sets of descriptions to malch as
follows. The QVISTA contains a description of the relationship that is being sought. When
the process begins, a KVISTA slatement has been found that describes an existing or derivable
relationship. The question being considered is whether a relationship that satisfies the
description given in the KVISTA statement will also satisfy the OVISTA description. That
question is answered by matching the two descriptions, If the match is successful, it defines
a set of substitutions (for universally quantified variables) that must be made in the KVISTA
description for it to describe a relationship that would also satisfy the QVISTA description.
These substitutions produce an "instance” of the KVIista statement that can be used as a basis
for a derivation. For example, if the selected QVISTA arc is part of the relationship G{a) and
the candidate binding is in the consequent of (Vx)[P(x) = Q(x}], then the instance P(a} =

Q{a) would be created.

The basic rules that are used in doing the match are the following. When comparing the
two descriptions, an existental in the KVISTa can malch only with an existential in the
OMVISTA or a universal in the KVISTA, and a universal in the QVISTA can match only with a
universal in the KVISTA or an existential in the QVISTA. Remember that nodes thut are elements of
KVISTA or QVISTA spaces are considercd to represent existentially guantified entities. Thesc rules are
derived directly from the rules for unification. The key observation is that the derived rules
should correspond to the rules used for unification in a refutation proof where the maich is

being done using the negation of the query.

As an exampie of the use of parity during an applicability test, consider again the query
shown in Figure 8. The general purposce binder task wses the are B--e-->Builds as an index
to find implication T-as o candidate staiement 10 use in the derivation of a binding for the
arc Z-=e-~>Builds. Since both arcs have posttive parity, a "builds” relationship derived

from the implication will have the desired logical sign. The unification process produces

31

pairings for nodes Z, ?X. and M, and for the obj and agt arcs. All the members of those
pairs have positive parity except node M. Node M's negative parity indicates that it is
~universally quantified and can therefore be paired with an existential KVISTA node having
‘positive parity, namely Ole~-Black. The resuiting substitution of Ole-Black for M creates

the instance of the implication that is used in the derivation.

Extracting Embedded Structures

When an applicable non-atomic KVISTA statement has been found, the derivation that is
initiated can be thought of as one designed to “extract” the desired embedded relationship
" from the statemnent so that the relation or its negation can be asserted at the top level of the
KVIsTA and the desired binding can be assigned. For example, if the candidate binding is in
the disjunct x of a disjunction xVy, then finding a solution to the subprobiem "prove ~y*

will allow x to be asserted and the binding to be assigned.

Rules for Extraction

The derivation is begun by creating the appropriate instance of the KVISTA statement (as

indicated by the applicability test) and then applying the following extraction rules:

To_extract Given Allemplt 1o prove
Xj X1 V..V SRS TATTAYS THS PATS SIS VAPRVAL.D 3
~X; ~(xgAAXy) x]/\.../\xi_!/\xi_,_[/\.../\xn
X y = X y

~X X = vy ~y

Note that the extraction rules for negated conjunctions and for implications are merely

rewrites of the rule for disjunctions.

If an instantiated implication contains a universaily quantified variable, then that varinble
becomes part of the subproblem produced by extracting either the antecedent or the

consequent and is, free o be bound during the process of solving the subproblem. For

32

example, suppose the original implication is of the form (YX)(Vy)LP(x,y} = Q(x,y)] and
the instantiation is of the form (V.\k)[l’(x,n) = Q(x,a)] If the consequent is to be extracled,
. then the subproblem has the form "Find an x such that P(x,a)". The assertion that is made

when the subproblem is solved is of the form Q{<binding of x>,).

Nesting

If the relationship being extracted is embedded in a nesting of disjunctions, negated
conjunctions, or implications (such as the B(x) in A(x} = [B(x) V ~C(x)]), then it is
necessary to apply a sequence of extraction rules to complete the extraction. The rules are
applied "top down" to the outermost disjunction, negation, or implication first, and all the
desired extraction rules are applied before any of the subproblems are worked on. Hence, in
the above example, a single subproblem is formed consisting of A{(x)AC(x). Solution of this
subproblem causes assertion of the desired B(<binding of x>). Doing the complete
extraction in one step results in the extraction rules being applied only once. makes available
- to the deductive machinery all the constrainls impused by all the subproblems, and aliows

the subproblems to be worked on in whatever order seems the most advantageous.

AVISTA and Gvista Extension Spaces.

Procedures that carry out derivations such as the extractions described above require
facilities for creating subproblems, makina assumptions, and asserting derived resulis. We
have used K-NET's partitioning features (o create such a set of derivation facilities that are
available for use by any binder task. In particular, provisions have been made for adding
spaces (called "extension spaces”) 10 the QVISTA or 1o the KVISTA in an environment. KViSTA
extension spaces are used Tor making assumpiions and for asserting derived results, OViIsTa

extension spaces are used for expressing subproblems.

For example, constder an environment B where K1 is the current (i.e, most recently added)
KVISTA extension space and a binder task for the QVISTA implieation x=sy is initialing a

derivation by assuming x and establishing v o5 a subproblem 1o be proved. The derivation is

33

initiated by creating an environment E2 that is an offspring of environment Fl, adding to
the KVISTA in E2 a new extension space K2 containing a copy of x, adding to the QVISTA in
E2 a new extension space Q2 conlaining a copy of ¥, and attaching a demon to space Q2 in
E2. When bindings are assigned to all the elements of y, the demon is fired in the current
environment (i.e., the environment in which all of the bindings are assigned) and in that
environment the demon removes space K2 from the KVISTA, removes space Q2 from the
QVISTA, asserts x=>y in space K1 (the new current KVISTA extension space), and assigns this

newly derived result as the binding for the original QVISTA implication.

In order to maintain the relationship between derived results and the assumptions that were
used to derive them, the following three rules are used in creating bindings and asserting

resuits.

The first rule is that in each environment only those binder tasks that are seeking bindings
for arcs in the most recently added subproblem are allowed to run. This rule helps prevent
duplication of effort among environments and assures that effort within an environment
created to pursue a particular derivation strategy will not be spent considering other

strategies.

The second rule restricts bindings assigned 1o elements of any given QVISTA space to be
elements of KVISTA spaces that existed at the time the QVISTA space was created. In addition
to preventing results derived with the aid of assumptions from being used as if they were
independent of the assumptions, this restriction is used to maintain the nesting of quantified

variables during derivations, as described in the sections below.

The third rule attempts to assure the widest availability of derived results 1o as many
subproblems in as many alternative proof paths as possible. [t specifies that each derived
refationship be asserted in the newest KVISTA extension space in the set consisting of the
-~ space containing the stadement used to indtiate the derivation and those KVISTA spaces
containing elements that were used as bindings to solve the subproblem created by the

derivation. This rule allows a derived result whose derivation does not make use of the

34

assumptions in recently added KVISTA extension spaces to be added in an earlier extension
space and therefore be made available to aid in the solution of subproblems created before

the assumptions were made.

Use of Extension Spaces for doing Extractions

‘During the multiple level extraction process, the results of some subproblems may be used in
the formation and solution of other subproblems, To make this possible and to prevent a
subproblem's results from being used before that subproblem is solved, we maintain the
order of the subproblems and their results by putting each -one in a separate space and
-adding those spaces 10 QVISTA and KVISTA as extensions in the order that the extraction rules

are applied. For example, the extraction of R(y) from

P(a) = {(Vx€X)P(x) A QyEVL(P(Y) A Q) = RMI

* will cause creation of the subproblem, prove I’(a) A P(y)} A Q(y), and will produce the
results (VXEXIP(x) A yEY A R{y). The resulis (VXEX)P(x) and the existence of an entity y
that is an element of Y cannot be used in the proof of P(a), but can be used in the proof of
P(yAQ(y). This ordering constraint is maintained by creating extension spaces in the

following order:

Ql: a OViSTA extension containing P(a) that accepts bindings from the KvisTA that was
current when the extraction was initiated.

Kl: a kVISTA extension containing (VNEXIP{x) A y€Y. the results of proving Pa).
- QL a QVISTA extension conteining P(y)AQ(y) that accepts bindings from K1 and the

inittal KVISTA.

Demons are attached to spaces Q1 and Q2 that fire upon completion of the subproblem.
Those demons cause spaces Q1 and Q2 o be removed from the OVISTA, space K1 o be
removed from the KVISTA, and the cumulative results, (YxEX)P{x)} A yEY A Riy). to oe

added to the then current KVISTA exlension.

35

Special Purpose Binder Tasks

The basic SNIFFER includes a collection of functions that form special purpose binder tasks
in addition to the general purpose binder described above. The most important of these
embody the derivation strategies for queries containing disjunctions, implications, and

negated conjunctions. In this section we will describe this collection of functions.

Proving Disjunctions, Implications, and Negated Conjunctions

QVISTA queries are sometimes nonatomic, for example, consider the questions "Were any

Mustangs built by Ford?" and "Are all red mustangs owned by playboys?”.

The system's special purpose binder lasks for nonatomic statements occuring in the QVISTA
apply a strategy of decomposing the statement into alternative simpler subproblems using

the following rules:

To Prove: Generate n subproblems of the form:
X(V..Vxy, Assume ~X; (A A~x, and prove x;
(X 1N\ XR) Assume X 1N AXy apg PrOve ~X;.
To Prove: Cienerate the Sl:l)problemsz

X=>y Assume X, prove y.

ASsume ~y, prove =~X.

(YxeXHIP(x)= {x)] Create x', assume x'€X A P{X'),
prove Q(x').
Create x', assume ~(Q{x'),

prove ~[<'€X A P{x"]

As was the case with the extraction rules discussed carlier, the subproblems created for
negated conjunctions and for implications are merely rewrites of those produced ftor
disjunctions. Fach binder task sclects an order in which to produce its subproblems so that

the casier oncs are produced first,

36

Each solution to each of the subproblems produces a set of bindings for the entire original
stalement being proved. Each time'one of these binder tasks is run, it creates a subproblem
in a newly created offspring environment and reschedules itself in the parent environment,
In the offspring environment it adds a new extension space to KVISTA containing a set of
assumptions, adds a new extension space to QVISTA containing an expression to be proved,
and attaches a demon to the new QVISTA extension space. When the demon is fired by the_
solution of the subproblem in the QVISTA extension space, it schedules a task that creates

bindings for the entire original expression in the then current environment.

If SNIFFER automatically sought inconsistencies between its knowledge base and assumptions
that are made, then it would be sufficient to create a singie subproblem from a disjunction.
Namely, assume the negation of all the disjuncts except one and then attempt to prove the
remaining one. However, since SNIFFER does not automatically check assumptions for
consistency, we must define two subproblems from a disjunction. Namely, one that specifies
a disjunct to be proved, say Xy, and an assumption ~XsA..A~xg and a second one that
consists only of trying to prove that the assumption made in the first subproblem is false.
However, the second subproblem is then attempting to prove the equivalent of the
disjunction xoV..Vx,. which itself defines two subproblems, etc. Therefore, in fact, n
subproblems are defined and they have the form shown in the rule given above. (Note that
in an actual proof it is unlikely that many of these subproblems will be created since what
appear to be the casiest ones are established first. Only when the initial ones are found to

be difficult to solve do others need to be attempted.)

The subproblem formation rules For implications differs from the rule for disjunctions in
that the subprehlems created from implications may involve universally quantified variables
(represented by nodes that oceur in both the implication’s anteceilent and consaqent
" spuces). n each such subproblem, the nodes representing universally quantified variables are
“assumed” in the KVISTA extension space created for the subproblem. They therefore
represent an entity in the knowledge vista about which nothing is known except the other

assumptions made by the subproblem. [f the statement to be proved in the subproblem can

37

be shown to be true about that entity, then it is true for all entities for which those
assumptions are true. Such a proof is sufficient to complete the subproblem and therefore

prove the implication.

For example, if SNIFFER is attempting to prove that only insecure people own red Mustangs
(represented by the implication "if x is a red Mustang, then x is owned by an insecure
person™), and the generator for implications creates a subproblem that assumes the
implication's antecedent and attempts to prove its consequent, then the assumption for that
subproblem would be that some newly created node x' represents an entity that is a red
Mustang, and the statement to be proved would be that the entity represented by x' is owned

by an insecure person.

Function Applications

In a previous section we discussed Lﬁe procedural augmentation of K-NET through the use of
the Applications set. A special purpose binder task creates elements of the Applications set
in the KVISTA by calling the indicated function with the indicated argumenis. This binder
task is needed when a subproblem is created consisting of the antecedent of a KVISTA
implication that describes a "procedural attachment” to the network. Such subproblems
describe an element of the Applications set that can be created as soon as bindings are
determined for each of the arguments. If the binder task is called before all the argument
bindings have been determined, then it atiaches demons to the unbound argument nodes that
will restart the binder task when all of them have been bound. When all arguments are
.present. the procedure is called and new network structures are added to the KVISTA to

" represent the result.

“Fhe use of the Application set allows a K-NET to explicitly represent meta-relationships
between sets of relationships sid the procedures thul compuie them. If a user has no need
t represent such meta-relationships explicitly, then procedural augmentation may he
reatized much more efTiciently through the use of aser-supplied binder tasks. For exaniple,

rather than include the theorem of Figure 6, a specialist for the Sums relationship set may

38

he added that knows how to call function PLUS and add new information to the KVISTA as

described for Applications.

Case Analysis Proofs

There is an important class of problems that the deduction mechanisms we have described
thus far cannot solve. Namely, those that require a case analysis proof (See Loveland and Stickel,
1973, and Moore, 1975). For example, consider the problem of proving some relation R given a
KVISTA containing (PVQ) A (P=R) A (Q=>R). The mechanisms we have described would
20 into an infinite loop attempting to solve this problem. What is needed is a case analysis
mechanism that will, for example, attempt to prove R in the case where P is true and then
attempt to prove R again in the case where Q is true. Since R can be proved in both those
cases and the KVISTA contains a statement indicating that either P> or Q is true, the problem

is solved.

A major difficuity in creating a design for a case analysis proof mechanism is the
development of a procedure for defining the cases. Every nenatomic statement in the
KVvisTA defines a candidate set of cases (e.g.. an implication x=+y defines the set {~x, y}).
Therefore, the problem of defining the cases can be considered 1o be one of selecting an

appropriate nonatomic KVISTA stalement.

We are currently experimenting with the following scheme which appears to be an effective
way of making the selection. [is based on the observation that for a case analysis proof to
be necessary, it must not be possible (or be impossibly difficult) to complete a proof
without the case assumptions. Therefore, in each case the assumplions must be uselul at
some point in the proof. The key, then, to defining the cases for a case analysis proof is in
the recognition during the attempt o construct a standard proof of the need for each of the

assumptions in some potential set of cases.

Disjunclions in the Kvista, for example, are selected to be the basis for a case analysis proof

by recording each time one of the disjuncts is extracted (ie., contains a relationship that

39

matches some relationship in the QViSTA) during a proof attempt. If all the disjuncts of a
particular instance of a disjunctio'n have been extracted, then we can conclude that each of
the disjuncts would be a useful case assumiption and therefore that the disjunction could be
the basis for a potentially successful case analysis proof. The same conclusion can be made
when both the antecedent and the consequent of an implication or all the conjuncts of a

negated conjunction have been extracted.

When such a "fully extracted" KvisTa statement is found, the first common parent of the
environments in which the extractions were initiated is found, and a new task is added to
that parent environment's agenda to initiate the case analysis proof. That proof attempts to
derive bindings for the portion of the QvisTA for which bindings were being derived each
time one of the extractions was done. The task creates an offspring environment and in 'that
environment assumes the first case, establishes the statements to be proved in a new QVISTA
extension space, and attaches a demon o the new QVISTA extension. The demon does the
same thing for the next case. The last demon asserts the statements that have been proved in

each case and assigns the appropriate bindings.

Note that in the example given above, any of the three KVISTA statements could be used as
the basis for a case analysis proof {eg, ~P and R is an acceptable set of cases). Our
selection procedure could find any one (or all)y of them, depending on the order in which

new enviromments are created in the environment tree.

To achieve completeness, one must also consider cases defined by relationships that occur in
the initial QvIsTA in both a negated and unnegated form. For example, P{x) and ~P(y}
occuring in the QvISTA define a useful set of cases {1°(<binding of x>}, ~P(<bhinding of
- x>)) when the binding of x along one proof path iy the same as the binding of

=

y along

another path.

Concluding Remarks

The goal of this research is (0 provide a unificd system that has powerful, general

40

mechanisms and that can be made very efficient for solving the most frequently encountered
problems in particular application areas. The central idea is to use specialized
representations and deduction schemes where they can be effective, while having a logically

complete mechanism to fall back on when the special mechanisms fail.

v

In producing K-NET and SNIFFER, we have attempted to create convenient hooks for adding
specialists, and useful building blocks from which those specialists can be constructed.
These hooks include the links to procedures {(and hence to other representation structures)
that are included in K-NET, the pattern-directed strategy selectors in SNIFFER that are
capable of invoking user-supplied tasks, and SNIFFER's agenda control mechanism. The
building blocks include the taxonomy derivation functions, the unification machinery, and

the facilities for manipulating extension spaces.

We plan 1o continue our experimentation with various specialist routines. both for the rapid
handling of particular types ol deduction and retrieval and for the extension of the system
to include new types of problem solving activities, including reasoning with uncertainties
and about processes. Preliminary experience indicates that the facilities provided make this

exploration munageable and nroductive.

An important goal of future work with SNIFFER is to delermine the cifectiveness of its
control mechanisms, particularty the use of INTERLISP coroutines and multipie level agendas.
The use of these mechanisms to coordinate multiple types of problem solving activities is of
particular interest 1o us, as is the use of heuristics to guide the allocation of resources among
the various strategies that SNIFFER coordinates. We huve c¢nly begun to gain experience in
these aress. HHowever, the modular control structure of SNIFFER and the strong cross-

indexing of K-NET provide a very supportive environment for future explorations,

41

Acknowledgements

The research reported in this paper was supported at SR1 by the Advance Research Projects
Agency under contracts DAAG29-76-C-0011 and DAAG29-76-C-0012 with the US. Army
Research Office. The Xerox Palo Alio Rescarch Center has provided support to the first
“author during the writing and preparation of this paper. Nils Nilsson has been an
- important contributor to the design of this system, particulariy with regard 10 the deductive
machinery. Ann Robinson, Johnathon Siocum, and Mike Wilber have been major
participants in the overall implementation effort. Danny Bobrow has provided important
critiques of our efforts to describe the work.

References

Bobrow, D. G. and Weebreit, B. "A Model and Stack implementation for Multiple
Environments". Communications of the ACM, Vol. 16, No. 10, Oct. 1973,

Bledsoe, W. W., Boyer, R. S., and Henneman, W. H. "Computer Proofs of Limit Theorems"”.
Artificial Intelligence fournal, Vol. 3, 1972, pp. 27-60.

Bobrow, D. G., and Winograd, T. "An Overview of KRL, A Knowledgze Representation
Language". Cognitive Science, Vol. 1, No. 1, Jan. 1977

Hendrix, G. G. "Expanding the Utility of Semantic Networks through Partitioning”. Fourth
International Joint Conference on Artificial inteiligence, 1975.

Loveland, D. and Stickel. M. "A Hole in Goual Trees”. Third International Joint Conference
on Artificial Intelligence, 1973, pp. 153-161.

Moore. R. C. "Reasoning from Incomplete Knowledge in a Procedural Deduction Systemn".
MIT AI-TR-347, Dec, 1975.

Reiter, B. "An Approach to Deductive Question-Answering Systems”. SIGART Newsletter,
MNatural Language Interfaces [ssue, Feb, 1977, pp. 41-43

Teitelman, W. INTERLISP Reference Manual. XEROX Palo Alto Rewenrch Center, 1975,

Watker, D.. Editor. "Speech Understanding Research, Final Report, Project 762", Artificial
Inteliigence Center, Stantord Research Institute, Menlo Park Ca., 1976,

42

